

Smart transmitter/Gas Detector Head

SD-3

Safety Manual

Document Number: PT2-306

[NOTE] The SD-3 is certified for functional safety (IEC 61508:2010 Part 2 and Part 3). To ensure certified functionality, maintain the product as described in this document.

RIKEN KEIKI Co., Ltd.

2-7-6 Azusawa, Itabashi-ku, Tokyo, 174-8744, Japan

Phone: +81-3-3966-1113 Fax: +81-3-3558-9110

E-mail: intdept@rikenkeiki.co.jp Web site: https://www.rikenkeiki.co.jp/

Revision history

Rev.	Details	Approved	Checked	Created
0	Now do or the set	KOGURE	MUTOU Hiroki	SAIKI Yuki
0	New document	May 18, 2021	May 18, 2021	May 18, 2021
1				
•				
2				
3				
4				
5				
6				
7				
8				

Contents

1	Pur	pose	4
	1-1	Ambient conditions	4
	1-2	Regulations and applicable standards (functional safety)	4
	1-3	Applicable standards (other than functional safety standards)	5
	1-4	Magnetic field threshold limit values (immunity level)	5
2	Usa	ge Instructions	6
	2-1	Safety Functions	6
	2-2	Non-functional safety features	6
	2-3	Safety accuracy	8
	2-4	Diagnosis response	8
	2-5	Setup	8
	2-6	Proof test	8
	2-7	Maintenance	10
	2-8	Repairs and replacements	10
	2-9	Storage, Relocation, and Disposal	10
	2-10	Startup time (initialization time)	10
	2-11	Updating firmware	10
	2-12	Reliability data	11
	2-13	Operation request frequency	11
	2-14	Operation mode	11
	2-15	Availability rate	11
	2-16	Power source	11
	2-17	Product service life	11
	2-18	Requested parameter settings	11
	2-19	Limitations on installation and operating environments	12
	2-20	Application limitations	12
	2-21	Identification of hardware/software configurations	12
	2-22	Product Specifications	12
	2-23	Error codes and message	12
	2-24	Operator interfaces	12
	2-25	Prohibited items	12
	2-26	Terminology and abbreviations	13

Safety Manual

1 Purpose

This Safety Manual can be used at SIL2 in HFT 0 and SIL 3 in HFT 1. (SIL 3 Capable) This document discusses topics for which the user is responsible if the SD-3 (this product), a certified device, functions as or is part of a configuration functioning as a safety instrument. These topics include proof testing, repairs and replacement, reliability data, product service life, environmental limitations, operational limitations, and various parameters. To ensure product safety, carefully read this document and all related documents.

This product monitors combustible gases, toxic gases, and oxygen concentrations at sampling points.

This safety device is designed to prevent gas-related accidents and injury by outputting a current (4 - 20 mA) to indicate the gas concentrations detected.

Classified as a sensor (subsystem) for safety devices, this product outputs 4 - 20 mA current according to the gas concentrations detected, or HART protocol signals when requested by the upstream system, to a logic section of the upstream system.

This product was developed for use as a single sensor in a SIL2 loop (IEC 61508).

1-1 Ambient conditions

Operating temperature range: -40 to +70 °C (no sudden changes)

Operating humidity range: 10 to 90 %RH (no condensation)

Storage temperature range: -10 to +40 °C (no sudden changes)

Storage humidity range: 10 to 90 %RH (no condensation)

1-2 Regulations and applicable standards (functional safety)

IEC 61508:2010 Parts 1 to 7

Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-Related Systems

1-3 Applicable standards (other than functional safety standards)

Japanese explosion-proof	General provisions in 2015 technological
	standards
	Flameproof enclosures in technological
	standard 2018
EMC Directive	EN 50270:2015 (Type 2)
IECEx standards	IEC 60079-0:2017
	IEC 60079-1:2014
ATEX Directive	EN 60079-0:2018
	EN 60079-1:2014
Performance related	IEC/EN 60079-29-1
	EN 45544-3
	EN 50104
HART	HART7

1-4 Magnetic field threshold limit values (immunity level)

EN 50270:2015 request level

Table 1 Immunity test requirements: EN 50270:2015 (Type 2)

Item	Test Procedure	Specification	Criteria
Electrostatic	EN	±6 kV (CD: contact discharge)	Α
discharges	61000-4-2:2009	±8 kV (AD: air discharge)	
Radio-frequency	EN	10 V/m: 80 – 1,000 MHz	Α
electromagnetic field	61000-4-3:2006	10 V/m: 1.4 - 2 GHz	
	+A1:2008	3 V/m: 2 - 2.7 GHz	
	+A2:2010	80 %AM, 1 kHz (unmodulated, rms)	
Electrical fast	EN	(DC power, earth line)	Α
transient/burst	61000-4-4:2004	±2 kV (5/50 ns, 5 kHz)	
(DC power)	+A1:2010		
(Earth line)		(I/O Signal)	
(I/O signal)		±1 kV (5/50 ns, 5 kHz)	
Surges	EN	(DC power)	В
(DC power)	61000-4-5:2006	±2 kV (line to ground)	
(I/O signal)		±1 kV (line to line)	
		(1.2/50 (8/20) µs)	
		(1/0 -:1)	
		(I/O signal)	
		±1 kV (line to ground)	
D !' (EN	(1.2/50 (8/20) μs)	Δ.
Radio-frequency	EN	0.15 - 80 MHz, 10 V (unmodulated,	Α
common mode	61000-4-6:2009	rms) 80 %AM, 1 kHz	
(I/O signal)	EN	E0/60 LI= 20 A/m (*****a)	Λ
Power frequency	61000-4-8:2010	50/60 Hz, 30 A/m (rms)	Α
magnetic field Voltage dips	EN61000-4-29	0 % residual voltage / 1,000 ms	С
voitage uips	LINU 1000-4-29	duration	
		40 % residual voltage / 1,000 ms	
		duration	
Short interruptions	EN61000-4-29	0 % residual voltage / 20 ms duration	С
Onort interruptions	LINU 1000-4-29	10 /0 103iddai voitage / 20 m3 ddiation)

2 Usage Instructions

2-1 Safety Functions

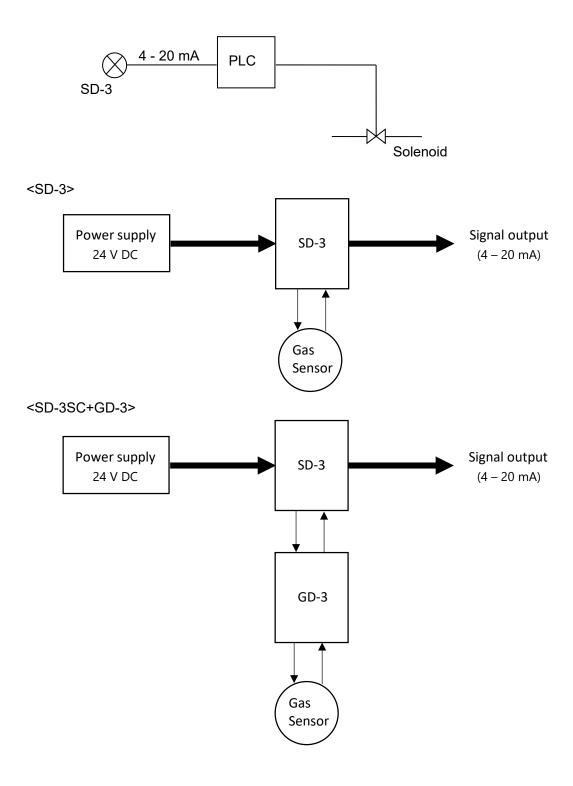
The following items are the safety functions of this product.

- Monitors combustible gases, toxic gases, and oxygen concentrations at sampling points.
- Safe status means the current is output to the upstream system according to the concentrations of the combustible gases, toxic gases, or oxygen being monitored. The product outputs 4 20 mA signals and HART protocol signals (*).

• 4 - 20 mA output

The relationship between the measured gas concentrations and 4 - 20 mA output is proportional. The output is 4 mA at F.S ×0 %, and when concentration is full scale, the output is 20mA at F.S×100 %.

* HART output is not included in the safety functions.


2-2 Non-functional safety features

The following features are not functional safety features:

- HART output
- Contact output (optional)
- RS485 output (optional)

System example

An example of a system that controls a solenoid valve via PLCs to create a shut off.

2-3 Safety accuracy

Safety accuracy: 20 %

*The FMEDA failure rate includes failures of internal parts causing deviations exceeding this accuracy.

Applicable sensors: NCF series

Gas response: 50 % of response time is within 20 seconds

90 % of response time is within 60 seconds

Applicable sensors: IRF series

Gas response: 50 % of response time is within 20 seconds

 $90\ \%$ of response time is within $60\ \text{seconds}$

2-4 Diagnosis response

ROM/RAM check self-diagnostic: 24 hours

Maximum response time for self-diagnostic results other than the above: 15 seconds

*This indicates that notification is output within this time with regard to part failures detected by the self-diagnostic.s. Note that this is the combined total time for the self-diagnostic test interval and failure response time.

2-5 Setup

Refer to the separate Operating Manual. Also test the parameters already set.

2-6 Proof test

The recommended intervals for running proof tests are 1 year for IRF and 6 months for NCF.

Proof test details: Calibration, adjustment of 4 - 20 mA output values, sensor

replacement, etc.

(Refer to 'Replacement of periodic replacement parts' in the operating manual for the frequency for replacing sensors.)

Proof test standards: Must allow/perform calibration.

Alarm delay times and gas response times must meet performance

expectations.

MTTR: 24 hours
Tools used: Refer below

Tools used	Specifications	Maintenance
Calibration gas	Depends on gas type.	Must be traceable.
Calibration	Dedicated calibration adapter for IRF sensors	Undamaged
adapter	(4283 9011 00)	
	Dedicated calibration adapter for combustible F	
	sensors (4283 9012 70)	
Pump	One with flow rate of 0.5 L/min or more	Maintenance by the
	One meeting explosion-proof specifications	manufacturer
Flowmeter	One capable of measuring to 0.1 L tolerances	Maintenance by the
	One with markings allowing identification of flow	manufacturer
	rate settings and tolerances	
	It is also possible to adjust the flow rate with a	
	pump equipped with a flowmeter	
Piping	For general combustible gases –	Undamaged
	Material: Polyurethane	
	Internal diameter: 4 mm	
	Pipe length: Within 1 m	
	For organic solvent gases –	
	Material: Teflon	
	Internal diameter: 4 mm	
	Pipe length: Within 1 m	
	For strongly adsorptive gases –	
	Material: Teflon	
	Internal diameter: 4 mm	
	Pipe length: Within 10 cm	

^{*}Functionality anticipates disabling of product functions when performing the proof test.

(Refer to the operating manual for more information.)

Proof test procedure

- 1) Make sure the safety functions are bypassed.
- 2) Confirm that the gas concentration reading on this product is zero.
- 3) Introduce the gas for gas calibration.
- 4) Perform checks of gas response time and 4 20 mA output values.
- 5) Restore the bypassed safety functions to finish the test.

^{*}We recommend maintaining records of proof test results.

^{*}This product may malfunction if the proof test is not performed correctly. The proof test must be performed by trained service personnel.

2-7 Maintenance

For maintenance items other than the proof test, refer to '7. Maintenance' in the operating manual.

2-8 Repairs and replacements

Refer to '7-7 Parts replacement' in the operating manual.

2-9 Storage, Relocation, and Disposal

Refer to '8. Storage, Relocation, and Disposal' in the operating manual.

2-10 Startup time (initialization time)

Initialization time is the time shown below from when the power for the product was turned on.

Proper gas detection is not possible during this time.

Model	Not compatible with EN	Compatible with EN
IRF	25 sec	60 sec
NCF	25 sec	60 sec

We plan to insert a reference to the operating manual. (The current description in the operating manual is inadequate.)

2-11 Updating firmware

You must return the product to a RIKEN KEIKI factory to update the firmware.

2-12 Reliability data

Failure rates, failure modes, and other information are recorded in the following FMEDA report.

Model	FMEDA report Report No.:
SD-3RI	RK 19/01-130 R001
SD-3NC	RK 20/05-036 R002

Refer to the separate 'FMEDA Report'.

To satisfy SIL2, use at 1001 (HFT = 0). To satisfy SIL3, use at 1002 (HFT = 1).

2-13 Operation request frequency

Once annually or less

2-14 Operation mode

Low frequency operation request mode (frequency of operation requests is once annually or less)

2-15 Availability rate

Availability rate: Constantly available

2-16 Power source

Rating: 24 V DC

Allowable range: 18.0 to 30.0 V DC

2-17 Product service life

Product service life: 10 years from date of manufacture

The reliability data in the FMEDA report is valid only during this period.

2-18 Requested parameter settings

- The 4 20 mA output value in the event of a use involving burnout (failure) is 3.6 mA or less or 21 mA or greater.
- From a security perspective, use a write protect function that prevents changes in settings via HART protocol signals.
- The above requirements must be met for applications involving functional safety.

2-19 Limitations on installation and operating environments

Installation: Refer to '4. Installation' in the operating manual.

Operating environment: Refer to '10. Product Specifications' in the operating manual.

2-20 Application limitations

Refer to the separate Operating Manual for application limitations.

2-21 Identification of hardware/software configurations

SD-3NC

Software Version	Ver 1.1
Hardware Version	Ver 1.0

SD-3RI

Software Version	Ver 1.0
Hardware Version	Ver 1.0

2-22 Product Specifications

Refer to '10. Product Specifications' in the operating manual.

2-23 Error codes and message

Corrective action and procedures when faults or errors occur

Refer to 'Troubleshooting' in the operating manual.

2-24 Operator interfaces

Refer to 'Usage Instructions' in the operating manual.

2-25 Prohibited items

Modification of this product is prohibited.

2-26 Terminology and abbreviations

Term

Safety	Freedom from unacceptable risk of harm.	
Functional Safety	The ability of a system to carry out the actions necessary to achieve	
	or to maintain a defined safe state for the equipment under control of	
	system	
Basic Safety	The equipment must be designed and manufactured such that it	
	protects against resulting fire and explosion under explosive	
	atmosphere	
Safety Assessment	The investigation to arrive at a judgment - based on	
	evidence - of the safety achieved by safety-related systems	
Fail-Safe State	State that the defined fail-safe	
Fail Safe	Failure that go to the defined fail-safe state without a demand from	
	the process	
Fail Dangerous	Failure that does not respond to a demand from the process	
	(i.e. being unable to go to the defined fail-safe state).	
	Failure that deviates the process signal or the actual output by more	
	than 15% of span, drifts away from the user defined threshold (Trip	
	Point) and that leaves the output within active scale.	
Fail Dangerous	Failure that is dangerous and that is not being diagnosed by	
Undetected	automatic stroke testing.	
Fail Dangerous	Failure that is dangerous but is detected by automatic stroke testing.	
Detected		
Fail Annunciation	Failure that does not cause a false trip or prevent the safety function	
Undetected	but does cause loss of an automatic diagnostic and is not detected	
	by another diagnostic.	
Fail Annunciation	Failure that does not cause a false trip or prevent the safety function	
Detected	but does cause loss of an automatic diagnostic or false diagnostic	
	indication.	
Fail No Effect	Failure of a component that is part of the safety function but that has	
	no effect on the safety function.	
Low demand mode	Mode, where the frequency of demands for operation made on a	
	safety-related system is no greater than twice the proof test	
	frequency.	

Abbreviations

Failure Modes, Effects and Diagnostic Analysis	
Hardware Fault Tolerance	
Tolerance that to keep executing the function requested under the	
hardware fault and error condition	
Management of Change	
Management of change the hardware or software elements, and	
keep traceability	
Average Probability of Failure on Demand	
Safe Failure Fraction	
The fraction of the overall failure rate of a device that results in either	
a safe fault or a diagnosed unsafe fault.	
Safety Instrumented Function	
A set of equipment intended to reduce the risk due to a specific	
hazard.	
Safety Integrity Level	
Discrete level (one out of a possible four) for specifying the safety	
integrity requirements of the safety functions to be allocated to the	
E/E/PE safety-related systems where Safety Integrity Level 4 has the	
highest level of safety integrity and Safety Integrity Level 1 has the	
lowest.	
Safety Instrumented System	
Implementation of one or more Safety	
Instrumented Functions. A SIS is composed of any combination of	
sensor(s), logic solver(s), and final element(s).	